Image Denoising Using Very Deep Fully Convolutional Encoder-Decoder Networks with Symmetric Skip Connections

نویسندگان

  • Xiao-Jiao Mao
  • Chunhua Shen
  • Yu-Bin Yang
چکیده

In this paper, we propose a very deep fully convolutional encoding-decoding framework for image restoration such as denoising and super-resolution. The network is composed of multiple layers of convolution and de-convolution operators, learning end-to-end mappings from corrupted images to the original ones. The convolutional layers act as the feature extractor, which capture the abstraction of image contents while eliminating noises/corruptions. De-convolutional layers are then used to recover the image details. We propose to symmetrically link convolutional and de-convolutional layers with skip-layer connections, with which the training converges much faster and attains a higher-quality local optimum. First, The skip connections allow the signal to be back-propagated to bottom layers directly, and thus tackles the problem of gradient vanishing, making training deep networks easier and achieving restoration performance gains consequently. Second, these skip connections pass image details from convolutional layers to de-convolutional layers, which is beneficial in recovering the original image. Significantly, with the large capacity, we can handle different levels of noises using a single model. Experimental results show that our network achieves better performance than all previously reported state-of-the-art methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections

In this paper, we propose a very deep fully convolutional encoding-decoding framework for image restoration such as denoising and super-resolution. The network is composed of multiple layers of convolution and deconvolution operators, learning end-to-end mappings from corrupted images to the original ones. The convolutional layers act as the feature extractor, which capture the abstraction of i...

متن کامل

Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections

Image restoration, including image denoising, super resolution, inpainting, and so on, is a well-studied problem in computer vision and image processing, as well as a test bed for low-level image modeling algorithms. In this work, we propose a very deep fully convolutional auto-encoder network for image restoration, which is a encoding-decoding framework with symmetric convolutional-deconvoluti...

متن کامل

Delayed Skip Connections for Music Content Driven Motion Generation

In this study, we employ skip connections into a deep recurrent neural network for modeling basic dance steps using audio as input. Our model consists of two blocks, one encodes the audio input sequences, and another generates the motion. The encoder uses a configuration called convolutional, long short-term memory deep neural network (CLDNN) which handle the power features of audio. Furthermor...

متن کامل

Unsupervised Feature Learning With Symmetrically Connected Convolutional Denoising Auto-encoders

Unsupervised pre-training was a critical technique for training deep neural networks years ago. With sufficient labeled data and modern training techniques, it is possible to train very deep neural networks from scratch in a purely supervised manner nowadays. However, unlabeled data is easier to obtain and usually of very large scale. How to make use of them better to help supervised learning i...

متن کامل

Provide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery

Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1603.09056  شماره 

صفحات  -

تاریخ انتشار 2016